If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2+36m=0
a = 3; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·3·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*3}=\frac{-72}{6} =-12 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*3}=\frac{0}{6} =0 $
| -11x+15=-6x-30 | | 7a-a=-a-8+2a | | 4(x-1)+5=-7 | | 77/x+9=16 | | 35/x+12=19 | | 4x–9.2x+8=0 | | 40/x+12=17 | | -32/x+12=20 | | 4x+20=48-4x | | -14/x+10=9 | | 10+z-4=11 | | -11/x+2=1 | | -(4y-1)=1 | | x+(x/8)=30 | | -(3m+1)=11 | | 10b+3=8 | | 2/x+8=9 | | -0.5x*x=4.89 | | -(k-3)=8 | | -4/x+3=5 | | -3×(x-2)=9 | | 0,5c+12=19 | | 9x^2+72x=-128 | | -25/x+11=6 | | 88/x+3=11 | | 78/x+8=14 | | -1x=(x) | | 2x+80=100x | | 2x-7x=7x-13 | | 16x^2+64x=-48 | | 10y=27 | | 54x=25 |